THE BREEDING BIOLOCY OF LITORIA SUBGLANDULOSA AND L. CITROPA (ANURA: HYLIDAE), AND A RE-EVALUATION OF THEIR GEOGRAPHIC DISTRIBUTION

by Marion Anstis* \& Murray I. Littifiohis

Abstract

Summary November, 1990. 'The known range of Limria subglamedolose is extended and that of t. stimpoi is revised. Population trends observed at the type liseality during the $1960 \mathrm{~s}-70 \mathrm{~s}$ and 1490 s are enmpared.

The atvertiscment eall, adull colouration in lite, behavioul amd embryological development of L. subglanditose are described and compared with those of L cotraqu. The single egg mass of L. vabolandalasa drows adeptation to the lotic envicomment, being sompace and strongly adhorent. The embryos and larval stages of the twa species are very similar in shape and colour in life from stage 17 sompats bate are reathly distinguishahe by monthparts. Companafive motes on laval behavenor are given.

 oviposilion. umbryotogy, larval hehavious.

Introduction

Limvia subglandulom with described as Latoride glandulose Tyler \& Anstis. 1975 bul renamed because of primary homonymy flyler \& Anstis. 1983). A member of the L. airmpa species group (Tyler \& Davies 1978), L. subglandulova was previously known obly from the Quectisfand/N5W border south to the New. England ranges of norhern Nsw (Tyler \& Anslis 1975). The type deseripton included a deseription of the larvae. but no data were availahle on oviposition, embryological development, larval behaviour or the advertisement cali.

The species was found 160 km soulh of its previous known distribution in the mid-monh coastal fanges and Barringlon Tops region by one of as (M. \triangle) in 1977 Its presence there and the absence of L citropa, pompled a re-examination of the distribution of both species. In addition, observalions on oviposition. the mophology of embryos. larvae and adults and a eomparison of the advertisement calls uf L. citrempa and 1. subglamdulase were maide and are reported here.

Materials and Methods

Linturia subglamdulosa

Aduht spectmens examined: Australian Museum (AM) R17577. 35525, 42934-35, 50163, 51096-7, 51104,5173549 . Point Lookout; R 34458 - 14 km Fast of Ebor; R36724 - Oakey Creek near Ebom;

[^0]R36975-Guy Fatyes River, Ebor: R71109-71114 Back Creck (Barwick Riven) ncal Point Lookont: R37017-5km S of Walcha: R39056 - 50 km k E of Gilen Innes ((fibraltar Range) R52981 - Sandys. Creck, Dortigo; R51178-80-Styx River. Point Lookout; R76519 - Glouceser Tops: R31683 Upper Allyur River. Barringion Tops: R104932 Ellemborought River, Bulga State Forest, NSW.

Lhtoria ciltoma

Arlult specimens cxamincel: Australian Museum R7560. Orbost: 7562. Aberleldy, Vic.: 19237. 18234. 18236. 18238 Stunwell Tope 79436 , Stanwell Park; $24500-24505, \quad 27590$, Faulconbridge; 45858 , Thitimere Lakes: 31685 , 7112.78927 Ilclensburgh; 45424. Tianjarat Falc: 5188 . Megalong Valley: 7110. Hazelbrook: 5008. Blaekheath: 69034. Bell, Kurrijong Rd: 76625.18 km N of lithgow: 8459 , Ponnam Hills; 14495, Cols Vile: 79100, 70623, Culoul Range N of Colo Etts.: 4261. Bundanoon; 71898.24 km N of Moss Vale; 15462, Gosiord: $78264-26.78698$, Kuringai-Chase: 60425. Nadgee Reserve; 79439, Galston Gorge: 7563, Manly, NSW.

Three adults eited as L cirmpa by Tyler \&\% Alstis (1975) Irom Bartington Tops localities:- Dept Zool., Univ. Melbourne (MUZD) 1792/64 - Upper Allym and MUZD 1690-91/63 - Wombal Creek, were re= exammed because of apparent overlap in ramge with The Barrirgton Tops Incalifies for I subghandetaso. These specimens have since been registered by the Numonal Museam of Victoria (NMV) as D32666 (Upper Allyn Rivery and D3266t-65 (Wombat Creck) Similarly, two specimens (NMV D6Zo9-10). sited by Copland (1957) as. L. simempe from near Grafon, noth-castern NSW, were exanmed.
Table 1. Details of localities, habitats suld freld observations for Litoria subglandulosa.

	Locality	Alt.(m)	Habitat/Weather	Date/Time	Adults Calling	Temp. (dry, bulb; dry/wet/ water ${ }^{\circ} \mathrm{C}$)	Larval Stages (L.sub.)	Latvae of Other Species Present
1	9.8 km E. of Elands NSW $31^{\circ} 36^{\prime} 59^{\prime \prime} \mathrm{S}$ $152^{5} 24^{\prime \prime} 00^{\prime \prime} \mathrm{E}$	680	Permanent flowing stream, basalt/sand. Semi-cleared wet sclerophyll forest.	19.i. 19772010 h	-	-	25-42	Misophyes balbus M. fasciolatus
				20.i. 19771100 h	-	-	25-42	L. pearsoniana
				16.i. 19961020 h	-	20/19.5/16	Nil	Crinia signifera
								L. pearsoniana
2	Tirrill Creek. Bulga State Forest NSW $31^{2} 31^{\prime \prime}+9^{\prime \prime} \mathrm{S}$ $152^{\circ} 08^{\prime} 21^{\prime \prime E}$	520	Permanent flowing stream. metamorphic/sand. Rainforest, overhead canopy.	$\begin{aligned} & \text { 28.xii. } 1979 \mathrm{-} \\ & \text { 2.र. } 1980 \mathrm{~m} / \mathrm{pm} \end{aligned}$	$\begin{aligned} & \text { Diurnal } \\ & \text { calling } 3+0 \text { o } \end{aligned}$	\cdots	$\begin{aligned} & \quad 26-46 \\ & \text { (many at } \\ & \text { stage } 46 \end{aligned}$	M. balbus L. pearsoniana
			Light rain, overcast after good rain on 3.x. 1980	$\begin{aligned} & 4 . x .1980 \\ & 1800-1930 \mathrm{~h} \end{aligned}$	6 da	16-17	No search	No search
				7.xii. 19801545 h	1 gravid of		$30-42$	M. balbus
				$8 . x$ ii. 1980 pm	10	$15 / 14.75$		L. pearsoniana
				9.xii. 19800720 h	-	Water 15	30-42	M. batbers
			Overcast. light rain after long dry period of over 6 months.	$\begin{aligned} & \text { 20.i.1994 am } \\ & \text { ams } \\ & \text { pm } \end{aligned}$	1^{-}	$\begin{gathered} 22 \\ 19.5 / 18.5 \end{gathered}$	$\begin{gathered} 40-44 \\ (6 \text { only }) \end{gathered}$	L. pean:uomiana L. phyllochroa M. balbus
			Warm. sumny. rain previous week	16.i. 19961400 h	-	27/24/19	$\begin{gathered} 39-42 \\ (7 \text { only }) \end{gathered}$	L. Besuewri L. pearsoniana
3	Ellenborough River Bulga State Forest NSW	610	Permanent flowing stream, basalusand. Wet sclerophyll forest.	1.1.1980 pm	-	-	32-38	M. balbes
	$\begin{aligned} & 31^{\circ} 35^{\prime} 31^{\prime \prime} \mathrm{S} \\ & 152^{\circ} 12^{\prime} 09^{\prime \prime} \mathrm{C} \end{aligned}$			$\begin{aligned} & 5 . x .1980 \mathrm{pm} \\ & 6 . \times .19801300 \mathrm{~h} \end{aligned}$	$\begin{gathered} 8 \text { ó } \\ 1 \text { gravid } \end{gathered}$	-	Nil	M. balbus
40	Frenchs Creek Bulga State Forest NSW $31^{\circ} 33^{\prime} 35^{\prime \prime} \mathrm{S}$ $152^{\circ} 11^{\prime} 27^{\prime \prime} \mathrm{E}$	580	Permanent flowing creck. metamorphic/sund. Wet sclerophyll forest	7,xii.19801915 h	3 ab	16/15.5	No search	M. fasciolatus L. pearsoniana L. phyllochroa
4 b	As above $31^{c} 33^{\prime}+0^{\prime \prime} \mathrm{S}$	320	As above	7.xi.19801945 h	20 す	16/15.5	*	As above
	$159^{\circ} 12{ }^{\prime} 26^{\prime \prime} \mathrm{E}$			$\begin{aligned} & \text { 8.xii. } 1980 \mathrm{pm} \\ & \text { 20.i. } 1994 \mathrm{pm} \\ & \text { 16.i. } 19961600 \mathrm{~h} \end{aligned}$	10	$\begin{gathered} 15 \\ 22 \\ 23 / 20 / 18.5 \end{gathered}$	$\begin{gathered} \mathrm{Nil} \\ 28,37 \\ (2 \text { only) } \end{gathered}$	Nil L. pearsontana

Table 1. Contimued.

$5 a$	Dilgry Creek Barrington Tops NSW $31^{\circ} 59^{\prime} 19^{\prime \prime} \mathrm{S}$ $151^{\circ} 33^{\prime} 28^{\prime \prime} \mathrm{E}$	1180	Permanent flowing small creek, basalt/sand Wet sclerophyll forest. Hot, dry day, brief stom,	25,xii. 19791.400 h	-	-	26-41	M. balbues C. signifera
56	Dilgry River Barrington Tops NSW	1160	Permanent flowing stram. basal//sand. Wet sclerophyll forest. Encalyptus. Casuarina, Acacius, Leptospermum	25, xii. 19791430 h	-	-	26-41	C. signifera
	As above $31^{\circ} 53^{\prime} 23^{\prime \prime} \mathrm{S}$			26.xii. 1979 pm	16	-	-	
	$151^{\circ} 32^{\prime} 17^{\prime \prime} \mathrm{E}$			20.x. 1994 am	groups of 3 ठठ	23	-	
				20.x.1994 1900 h	undercover 40 が 5 in 3 groups of up to 6	9.8 Water 13.4	-	
63	Polblue Creek Barrington Tops NSW $31^{\circ} 53^{\prime \prime} 18^{\prime \prime} \mathrm{S}$ $151^{\circ} 25^{\prime} 57^{\prime \prime} \mathrm{E}$	1450	Permanent flowing creek, basalt. Montane swampland. Euculyptus paucitlora, Dunthonia (tussock grass)	$26 . x 3 i .19791400 \mathrm{~h}$	-	-	26-43	M. balhus. C. signifera
6 b	As above $31^{\circ} 55^{\prime} 38^{\prime \prime} \mathrm{S}$ $151^{\circ} 23^{\prime} 14^{\prime \prime} \mathrm{E}$	1230	Permanent flowing creek. basalt. Montane forest.	19-20.xii. 1994 pm	685	-	No search	-
7 a	Manning River Barrington Tops NSW $31^{\circ} 52^{\prime} 53^{\prime \prime} \mathrm{S}$ $151^{\circ} 29^{\prime} 21^{\prime \prime} \mathrm{E}$	1190	Permanent river, wet sclerophyll forest	$26 . x i i .1979$ pm	-	-	26-43	M. balbus C. signifera
7b	$\begin{aligned} & \text { As above } \\ & 31^{\circ} 52^{\prime} 52^{\prime \prime} \mathrm{S} \\ & 151^{\circ} 29^{\prime} 34^{\prime \prime} \mathrm{E} \end{aligned}$	1220	As above. Clear sky, gusty winds Very strong winds	$\begin{aligned} & 6 \times x .199+ \\ & 2030-2121 \mathrm{~h} \\ & 7 . \times x .19940742 \mathrm{~h} \end{aligned}$	$\begin{array}{r} 505 \\ +30 \end{array}$	15 Water 13.5	-	-
8	Tuckers Creek Barrington Tops NSW $31^{\circ} 51^{\prime} 58^{\prime \prime} \mathrm{S}$ $151^{\circ} 39^{\prime} 12^{\prime \prime} \mathrm{E}$	750	Permanent stream, basalt, Wet sclerophyll forest	$4 . x 1.19941400 \mathrm{~h}$	2000	16.8 Water 9.4	8 egg masses	M. balbus C. signifera
9	Fal Brook Mount Royal State Forest Barrington Tops NSW $32^{\circ} 09^{\prime} 42^{\prime \prime} \mathrm{S}$ $151^{\circ} 18^{\prime} 46^{\prime \prime} \mathrm{E}$	750	Permanent stream, wet sclerophyll forest.	$8 . x .1992$	18	-	$\begin{aligned} & \text { No } \\ & \text { search } \end{aligned}$	No search

Table 1. Continued.

	Locality	Alt.(m)	Habitat/Weather	Date/Time	Adults Calling	Temp. (dry, bulb; dry/wet/ water ${ }^{\circ} \mathrm{C}$)	Larval Stages (L.sub.)	Larvae of Other Species Present
10	Back Creek (Barwick River) Point Lookout NSW $30^{\circ} 29^{\prime} 29^{\prime \prime} \mathrm{S}$ $152^{\circ} 20^{\prime} 38^{\prime \prime} \mathrm{E}$	1340	Permanent stream, basalt/sand, partly cleared grazing land. Montane wet sclerophyll forest	$\begin{aligned} & \text { 1.i. } 19721415 \mathrm{~h} \quad 2 \\ & \text { 29-30.xii. } 1973 \\ & \text { am/pm } \\ & \text { 5.i. } 19742115 \mathrm{~h} \\ & \text { 19.xii. } 1994 \mathrm{l} 700 \mathrm{~h} \end{aligned}$	2 すठ, 7 juveniles		$\begin{gathered} 25-46 \\ 25-46 \\ 25-46 \\ \text { Nil } \end{gathered}$	M. balbus C. signifera L. booroolongensis L. pearsoniana As above None present
11	Styx River Point Lookout NSW $\begin{aligned} & 30^{\circ} 30^{\prime} 34^{\prime \prime} \mathrm{S} \\ & 152^{\circ} 21^{\prime} 56^{\prime \prime} \mathrm{E} \end{aligned}$	1320	Permanent river, basalt/sand, partly cleared grazing land. Montane wet sclerophyll forest.	26.xii.1973 am 19.xii. 19941720 h	- -	Water 15	25-43 Nil	M. balbus C. signifera L. pearsoniana L. booroolongensis None present
12	Mobong Creek Wild Cattle Creek State Forest NE Dorrigo NSW $30^{\circ} 10^{\prime} 29^{\prime \prime} \mathrm{S}$ $152^{\circ} 53^{\prime} 48^{\prime \prime} \mathrm{E}$	510	Permanent stream, basalu/sand. Wet sclerophyll forest. Eucalyptus, Ceratopetalum, Acacia.	19.xii. 19941500 h	1 -	25.5/18/24	25-27	M. iteratus. M. balbus L. pearsoniana L. booroolongensis L. chloris
13 a	Upper reaches Diehard Creek 32 km E Glen Innes NSW $29^{\circ} 40^{\prime} 04^{\prime \prime} \mathrm{S}$ $152^{\circ} 03^{\prime} 25^{\prime \prime} \mathrm{E}$	980	Permanent small creek, granite/quartz/sand. Dry sclerophyll forest. Eucalyptus, Acacia, Pteridium, Blechnum ferns.	20.x. 19932200 h	$\begin{gathered} 10 \\ \text { (recorded) } \end{gathered}$	13	No search	No search
13b	$\begin{aligned} & \text { As above } \\ & 29^{\circ} 40^{\prime} 12^{\prime \prime} \mathrm{S} \\ & 152^{\circ} 03^{\prime} 38^{\prime \prime} \mathrm{E} \end{aligned}$	940	As above. Warm, sunny day.	20.xii. 19941400 h	-	34 Water 22	27-32	Nil
14	Coombadjha Creek, Washpool Nat. Park NE Glen Innes NSW $29^{\circ} 28^{\prime} 24^{\prime \prime} \mathrm{S}$ $152^{\circ} 19^{\prime} 11^{\prime \prime} \mathrm{E}$	770	Permanent river, granite, quartz, gravel, sand. Rainforest. Ceratopetalum, Eucalyptus, Acacia, Acmena, Quintinia, Cyathea, Todea etc. Warm, sunny day.	21.xii. 19941400 h	- -	$\begin{gathered} 28 \\ \text { Water } 22 \end{gathered}$	36-43	M. balbus L. pearsoniana

Table 2．Observations on adult behaviour in relation to oriposition－Litoria subglandulosa

	Date／Time	Weather	Temp．（dry bulb：dry／ wet bulb．${ }^{\circ} \mathrm{C}$ ）	Surface Water Temp ${ }^{\circ} \mathrm{C}$	Adult Activity／Site of Collection	Oriposition Site	No． of Egg
10	$\begin{gathered} 30-31 . x i i .1973 \\ \mathrm{am} / \mathrm{pn} \end{gathered}$	Clear Sky	15	－	Nocturnal： 7 すむ calling beside stream． Durnal：Gravid if beside stream 2m from calling of． Calling in bag prior to amplexus		
	$\begin{gathered} 1 . \mathrm{i} 1974 \\ 0100-0930 \end{gathered}$		－	16	Oviposition	In plastic bag attached below surface	292
3	$\text { 5.x. } 1980 \mathrm{pm}$	Clear shy．Rain previous night	16－17	8	8 すす calling		
	$\begin{gathered} 6 \times \times 19801300 \\ 6 . \times .19800300- \\ 0900 \end{gathered}$	Clear，sunny As above	19		Gravid q on log just above streamside in daylight． Calling a collected here previous night Oviposition	In plastic bag	42.5
2	7．xiti 1980	Clears summy	－	－	Gravid 우 on rock just above streamside	－	－
4 a	$\begin{gathered} \text { 7.xii. } 1980 \\ 2145 \end{gathered}$	Clear sky	16．5／15．5	－	2 す す calling on branch 3 m above water 1 collected	－	－
4 b	$\begin{gathered} 7-8 \times \text { xii. } 1980 \\ 2200-0900 \end{gathered}$		－	－	Oviposition－ 9 from loc．2．\％from loc． 4	In plastic bag	－
5b	$\begin{gathered} 20 . x .1994 \\ 0630 \end{gathered}$	Warm，clear，no rain previous nights．	s 8.5	9.3	Diurnal： $\bar{\phi}$ o calling undercover in groups of up to 3. along 150 m section of stream．	－	－
	1900	Some night fogs	9.8	13.4	Nocturnal： 40 of calling from branches．vegetation beside stream in groups of up to 6	－	
8	$\begin{gathered} 4 . x i .1994 \\ 1130 \end{gathered}$	Rain previous few days	16.8	9.4	2 ठす calling	8 egg masses，each attached just below surface to leaf．twig，rock in flowing water of pools	，

Table 3. Observations on adult behaviour in relation to oviposition - Litoria citropa

No.	Locality	Alt. (m)	Date/Time	Weather/Temp. (dry bulb, ${ }^{\circ}$ C)	Adult Activity	Oviposition Site	$\begin{gathered} \text { No. } \\ \text { of } \\ \text { Eggs } \end{gathered}$
15	Maddens Creek Darkes Forest NSW $\begin{aligned} & 34^{\circ} 13^{\prime} 02^{\prime \prime} \mathrm{S} \\ & 151^{\circ} 00^{\prime} 00^{\prime \prime} \mathrm{E} \end{aligned}$	350	30.x. 1972	Overcast night after one week of rain. 17	1 gravid q collected on road 50 m from stream.	-	-
	As above		2.xi. 1972	Overcast night after rain. 17	4 oे $^{\circ}$ calling beside stream. 1 ठ placed in plastic bag with $?$. Amplexus, but no eggs.	-	-
	As above		6.xi. 1972	Overcast night after storm. 19.5	3 ở कalling, 1 gravid 9 beside stream. 1 \& placed with $\%$ in bag. Oviposition	Eggs scattered over bottom of bag.	890
	As above		16.ix. 1975	Overcast night light rain. 18	10 ot of calling 2 gravid 9 ㅇ.1 5 placed in bag with 1 . Oviposition	Scattered over floor of large dish of water in cage.	928
16	Ourimbah Creek Ourimbah NSW $33^{\circ} 19^{\prime} 09^{\prime \prime} \mathrm{S}$ $151^{\circ} 17^{\prime} 53^{\prime \prime} \mathrm{E}$	50	25.xi. 1973	Dry. warm, partly overcast night	$10^{\top}, 1$ gravid 9 sitting near each other beside stream. Placed in bag. Oviposition	Scattered over bottom of bag	655

Qeipnsinion and emhrous

Obsetvations on thre captive brecding pais of each species, enflected by M.A., are summarsed in Tables 2 and 3, lu each case, a calline male was first collected at bight, then a gravid female was Inund during daylight the nest day in the sathe vicinity as the usale. The pars were each placed in a large inflated plastic bag containing streane water, af flat fock athd aguatic vegetation. The bag was covered with opaque material for the duration of amplesus.

Titortes subulanduloser

Stages $1-25$ (Gonged, 1900) were studied from three separate egg masses, one from the lype iocality (lacality 70. Tahte 1) and the others from the new focalities 3 and 46 . Hereatier, numbered localities will refer to Table 1 (anless otherwise stuted). Further samples frome ege masses found in the sticam at lecality 8 were mantained until stage 25 to comfirm identity by $\operatorname{Dr} \Delta$. White of the Nutional fatks 権Wildlfie Service, NSW (NP\& WS) Fimbryos and larvae were held in distes (40 cm diam.) containing streah wates. rocks. sediments and aydatic regetation, what matibatiod at $14^{\prime \prime}-21^{\circ} \mathrm{C}^{\circ}$ (Lecality 0) and $75^{-24} \mathrm{C}$ (locatities 3 and 4 h).

The cege nass from Jocality 46 laid on 7 xif. [980 (Fable 2). was subunerged withon a metal tea stamer in the some, flowing water of the stream for the imitial rto days of development, but both the egne masses Trom focalilios 3 and th were maintained at higher temperatutes of up of $24^{\circ} \mathrm{C}$ away Jrum the stream from the third day atter deposition. Embryomic developinent was observed under a Wild M5 sterenscopic microscope.

Lituria cithequa

Stages 1-25 were sudied from two egg masses from Darkes Forest and one from Ourimbah (Iocstities 15 \& 16. Tible 3), Samples of eges found soatered over the substrate in the stream were raised to stuge 2510 conlirm identity. Adules in breednge condition were placed in an inflated plastic bade covered with opaque material during amplexus and the resultine embryos maintaned at $16^{\circ}-23^{\circ} \mathrm{C}$:

Latrade

Tadpoles were measured (to 0.1 mm) with vernet eallifors and an ocular smicrometer attached to the microseope: They were amaesthetised in Chlorbutol solution before preservation in 3% formalin. The staging system is that of Gosner (1960). Abbreviations for laryal measurements shown in Tibble 6. Follow Ansitis (1976); TL = total lengit, BL $=$ body length $\mathrm{BD}=$ meximum hody depth, $\mathrm{TD}=$ maximum tanl depth. $T M=$ ail musculature depth (measured in line with TD). IO = interorhital span. $\mathrm{IN}=$ internarial span. $\mathrm{EN}=$ the distance between cye
and maris and MW = maximum mouth width. Hllustrations wete made using a drawing tuhe attached to the mieroseopts, Preserved and living larvae of L. subghemudutose fiom siles 1-9 were examined for comparison with those from the type Towality and measurements are given in. Table (6. Fecding and swimming hehavigur of several larvae of hoth sectes was observed in cuptivity and in theif natural bolic enviromment.

Adiertisettent calls.

The calls of 2 , subughatulesis were rousted at it tape-speed of 4.76 enf sec-1, using a Sony TC-DSPRO potiable cinselle recordet with a Ulier M5I6 mierophone and a Grampian patabolize reflector. Cails of 1 . cimapa were recorded with a Nagai 4.2 open-reel lape recorder at at tapespoed of $19 \mathrm{~cm} s \mathrm{se}$! and 4 Beyer M-88 carliond dynamic micmophone.
For Le sabglandubasa, the bape casselte was replayed on a Nakamichi Dragon tape deck, and for L. eftrmper the upen-reel tape was replayed on tither a Revos B-77 or a Sony TC-510-2 taperecorder. The calls were anadysed ait a Kay Elemetnes Digital Sorta-Graph. Model DSP-5500, Addimonal analyses of syaveformes were made hy bay bf a Sound-Blaster 16 cadd (Creative 'lechmology) installed in an IBM $P C$-compatible deskom enmputer, and nsing the Watre Sudio (Creative Technology) and Specta Plas Protessional. Release 300 (Proneer Hill) snllware. Both systems yielded consistent results tor andysis of the same signals.
The dominant ($=$ peak) freypencics were eatcutated as those of greatest amplitude in a power spectrum or an averaged speciral displays Numbers of pulses were determined by iospection of Wavelonms. Pulse rates were caleulated from the interval between the peak of the tirst pulse and the peak of the tast pulse in a pulse train and the number of pulses reduced by one (i.e, n-I 「ulses). Becatuse of the difficulty in determining the heginnings and ends G.e., zero amplitudest of pulses and palse trains. the peak - peak interval was taken as the duration. Where appropriate, pulse trains are lermed 'notes", If twa distinctly difleren types of temporal unit are prevent in a catl. Then the signal is desoribed as diphasic (sersm Litilejotin \& Harrison 1985).

Results

Distributrion und habitut
 Lituria suthglandulosa

The new lecalities ($1-9$) recorded in Tible I extend the koows southern range of this species about 180 km . All localities are permanent streams/rivers of basalt or metamorphic rock counitry associated with rantioress, montane or wer selerophyll forest (exeept for $13 a \& 13 h$ and are at 510 in or higher The

Fig. 1. A revision of the distribution of Eileria cilnerg ;nd Litarda subglamhutsa provided by Tyler \& Atsis
 tantulowa.
sothernimost locality at which the species has been found is locatity 9. Bal Brook. Mount Royal State Forest. NSW. The National Puks \& Widdlife Northcast Forests Biodiversity Sudy (199)1-1994) records 1. suhglandulasa at a number of sites between the Barrington Tops region and the northernmost forests of NSW, including Doyles River State Forest. Me Boss Slate Forest. Nowendoc. Wernkmbe National Park. Gibraltar Remge National Park, Siyx Slate Porest Spiraho State Forest and Boonon State Forest. This imdieates the species trat a fairly continuous distribution along the range country. From Jacality 9 in the south to nest Stanthorpe, just north of the (QId/NSW horder $\left(151^{\prime \prime} 40^{\prime} 30^{\prime \prime}\right.$ E, $28^{\prime \prime} 40^{\prime} 20^{\prime \prime}$ S) (Fig, 1),

On a daytume visit to locatities 10 and 11 on 19.xit. 1494 , no tadpoles of this or other species were located. This wis all a time when numerous ladpoles. of L. subglandulosa, L. bewronlongensis and Mixophyey halhus would be expected io be present (based on anmual studics in the 1960 k and '70s).

Observations hy Joho de Bayay and Paul Webber condirin that there has heen litife evidence of this lrog over reecnt years at the type locality, suggesting that the species may be undergoing a decline there. The National Parks and Wildife Biodiversity Study has, records of live males of this species calling of three sites on 2 ix. 1995 in the Styx River State Forest in the region of the type locality:

1) Edy Creek - lat./long. $30^{\circ} 34^{\prime} 39^{\prime \prime} \mathrm{E}, 152^{\circ}$ 14' $43^{\prime \prime} \mathrm{S}$. (allitude 1060 m)
2) Eely Creek - $30^{\prime \prime} 35^{\prime \prime} 26^{\prime \prime} \mathrm{E}, 152^{\prime \prime} 13^{\prime} 18^{\prime \prime} \mathrm{S}$. (890 m)
3) Waule 14at Cumping Area - $30^{\prime \prime} 35^{\prime} 28^{\prime \prime}$ 上, 15 " $12^{\prime} 38^{\prime \prime} \mathrm{S}(870 \mathrm{~m})$.
Observations on 20,xii-1994 at focalities 12, 13b and 14 (atl northern incalities) indicated the presence $\mathrm{ol}^{2} L$. subglandutesa tadpotes.

Litoria cimppa

Specinens NMV D32606 (Upper Allyn River) and D32604-65 (Wombit Creek) were exammed and. on the hasis of the indistinct tympanum. prominent supratympanic fold and head width. were found to be 1. vuhgiandutose. NMV D6709-10 cited by Copland (1957) as L. cirroyes from bear Gration in the nothesast coast of NSW, form the husis of the statement by Heatwole et al. (1995) that L. cirmpa "extends from nowheastern New South Wales to southeastem Vietoriat". Upoon examination, these specimens were forand to have the body proportions of L subglandulosa, but because hoth were collected in 1865 and in a poor state of preservation. it is difficut fo come to a definite conelusion ats to their dentity. The I wo species have not been found in sympatry at any site examined, and this fact, in combination with the examination of museum material, indicates that the drathage of the Hunter River appears to be a natural geographic barrier separating them (Ezig. 1).

Larvae were observed by M.A. on 1.i. 1976 and 25 i. 1996 at Boardinghousc Dan in the Watagan State Forest, south of the Himter diver NSW (33 00° () " E. $151^{\prime \prime} 24^{\prime} 15^{\prime \prime} \mathrm{S}$) and by R. Wells further north in the Pokolbin State Foresi, near Cessnock, in January 1993. This is the nothermonst known locality for this species.
Litoria swhghamdutosa appears tos replace I. cimyna it the Barrington Tops region north of Newcastle (lig.-1). I cinoma oceupics a wider variety of habitats than L. subglandelose, including permanent streams in basall country assoceated with wet sclerophyll or montane forest, to similar streams in sundstonc country. Although found at an allitude of 1066 m at Aberfeldy. Vic, and Blackheath, NSW. I. citropa also has been found in lower coastal areas io 50 m (locality 16. 'Jahle 3).

Adels colowe in life

Litorion subglandulera

Speecmens from nothern focalities were preduminumbly yreen. whereas those from und-nomh comsal localities ($1-4$) ranged from unilorm golden brown with seattered darker motling over the dorsum, to specimens with some small arciss of green ofien along the canthus nestraliz or under the eyc. Two maten Trom kerality I each had is broad dorsal patch of green over the head or derso-lateral regions. Two specimens, AMR76519, from Gleucester Tops NSW. and another observed by 11. Hines (NPNWS) at Fal Browk flocality 9\%, were unifurm bright grecn. apat from the chatacterimice golden dorso-lateral stripics.

Some golden-brown spectimens developed latge bught green patches over the dogain at megh is. Giow pers comm, The inger surfaces of the tind limb and groin area were wanducent yellow. as haurd in sudules from the type levality.

Lifulct citroper

L.itoria cörapor has a miform godden brown dural colouration (with green along the canthes rostralis and sides of the body). similat to mose specimems of 1. subglandulosa fron localities 1-9. The primeipal difference betweed the species is the colotit of the inter surfices of the hind limb and grom, which if L. citropa is brick rea.

Galling activity

Tiluria subeglandulosa

Calling begins in spring and was observed on 20.x. 1994 at localify 8 , when water temperatures at night were very low, e.g. $6^{\circ} \mathrm{C}$, and the dry bulb air lemperatare al leceblity 561900 h) was $9.8 \mathrm{C}^{\circ}$ (A. White, S, Gow pers, conom, Other abservations by M.A. at the type locality dacing amnal three-week periods. (DeedJan. 1906-74), and al all other localaties listed in Table I. mdicate that calling Dersists Lroughout December/Iantary in a varicty of Weather conditions, with increased activity during. of atter. hagt rath. Evenime dry bulb air lemperatures faken daring periods of spring/sutsmer actixity at the localifies in Table 1 were $13^{\circ} \mathrm{C}-19.5^{\circ} \mathrm{C}$ (mean $15.7^{\circ} \mathrm{C}$, At the lower temperatures $\left(13^{\circ}-14^{\circ} \mathrm{C}\right)$. calluge was dest intense and by aural comparison only, thotes were at a slower repetition rate.

Sporadie didumal calling was common dumg the breeduge season but males were moss adive al nighl. Diurnal calling took place from concealed positions such as under rocks of from within vegetation. either near the stream. of at times up to about four metres away liom the water. A single made or a smatl number of individuals, called from us early as (0742 h (c.g. locality 7h) Nocturnal colling was initiated by one foog nonmally followed by others in a
distifetly potyphonic theras. The calls of froge at the soubern locatibies sould nol be differentiated fron thosie of males at the type focality.

Males ubserved calling at sight were often perched on hroad leaves off trees and sheths approximately $0.5-1.5 \mathrm{~m}$ above streams, on ferms at the edge of the stream, or on yegetation limther from the water's edge. They were frequently lound calling in mmall groups. two or mare merres apart. On 22.x. 1494 at hecality 5 b. 40 males were calling at night im groups of up to six along a 50 m stretch of the streams i S . Gow pers. comon.). Al locality 76 on $7 \times x .1944$, lour males were salling 25 mo apar (K , Thumm pers. cornm).

At inalysts bit the dedvetisement call is provided below and comparison made with than of I. ciomper TWo adultional catl sequences, attósutable to L. suldelimedntosm, are in the Broatoustic Library of the Department of Zoology. University of Melbourne: both recorded hy M. I. Litlejohn and his assoctates. The firsh, from Giay Fawke Crech Ehor NSW $24^{\prime} 20^{\prime \prime}$ E $1520^{\circ} 20^{\circ} 40^{\circ} \mathrm{S}$, was recorded on 28.s. 1964 at a wet butb air temperatufe of $8.5^{\circ} \mathrm{C}$. and the second. From Flat Rock Creck 8 han W ar Point Lookout NSW felose to the firkt site) on 14.x. 1968 is it wet bulb ais emperature of 13 C . They ate similar in all pertioent respects to the odll described bere:

Litmion cilrepa

Males at Darkes Forest (locality 15. Tathle 3) were observed during sprige and sommer calling frog low branches nestas the stream, on rocks near the cdge of the water: of on exposed rack shelf in mid-stream close to shallow. slowly flowing water. As with 1. subglanduloser males called while two us more metres apart and activity thereased on overcas evemings during or after rain, Dry-hulth air lemperatures on several nights when males were calling in September-December 1972-1980, were $14^{\circ}-22^{\prime \prime} C^{\prime}$ No diumat calling was ohserved.

Achertisement calls
 Literia subalandertesa

The advertisemenl call of 1. subghomidera wals recorted by A. Cnuriney at Diehard Creek. Gien Limes plocality 13a), on 20.x.93. The dry-bulb air emperature was $13^{\prime} \mathrm{C}$. The lollowing data were obtanned from the fourth call in the sequence (Frg. 3A). The call had a duration of $9.375 \rightarrow$ and consists. of 13 puirs (doublels) of pulse trains (notes), wilh each of those in the first five paisk all being of relatively low amplitude (1 ig 3b). In the subsequent seven paiss of notes. the socond mote is of mueh gestiter amplitude than the firs. Thus, all but one of the tirs notes rwhich is of equal smplitodes are soter. with the amplitude of second notes beine

Fig. 2. Live egg mass of Litoria subglandulona attached to at leaf from submerged werhanging foliage in Tuckers Creek. Barrington Tops (locality 8). Scale bar $=[0 \mathrm{~mm}$.

Fig. 3. Waveforms of advertisement calls of Litoria subglandilosa and L. citropa.
A. The complete advertisement call ol Litoria suhslandulosa from whieh the values given in the text were derived. This call was recorded it Dichard Creek, Glen Innes, (locality 13a), at a dry-hulb air temperature of $13.0^{\circ} \mathrm{C}$
B. An expanded waveform of the eighth doublet in the call depicted in A.
C. A waveform of the complete advertisement eall of Litoria cilropa from which the values given in the text were derived. This call was recorded at the Rocky River Road crossing on the Brodribb River, 17.5 km NNE of Orhost, Vic. at a wet-bulb air temperature of $17.5^{\circ} \mathrm{C}$.

| 0 | 100 | 1
 200
 milliseconds | 300 | 400 | 500 |
| :--- | :---: | :--- | :--- | :---: | :---: | :---: |

greater by uf to 4 ل JB im pais $1-7$, and by 12 का 20 dB in pairs 8 - 13. Durationts of doublets range from 291 to 372 ms imean $=334$): intervals between stoublers
 repetition rate sf the doublets is $1,35 \mathrm{~s}^{\prime}$ 'The dominant of peak frequencies are whthin the range of 136()$-1480 \mathrm{~Hz}$, with meant of 1405 Hz for the first notes and 1454 Hz for the sceond notes. There ate 10. 15 rulseh ((ncun $=14.1$) in the firs notes of eath of the first seven pairs, and $4-6$ polses (medn $=4.8$) in the remainder, with 13-23 (mein) $=16.15$ in the second note of the linst seven pairice ams U - 11 (mean $=10.37$ in the rentainder. Kanges of durations of first mones ite $72-43$ inns (nean $=85.9$, Fon the fins seven patirs, 43-69 mis (metan $=59.8$) for the orhers and 126$1+9$ iti- Imean 137.61 and 134-159 ins (mesh 1.44.2) respectively for the sceond ontes.. Puthe rates of fisst nates range fing $125-167 \mathrm{p} s^{-1}$ (mean 152.5) in the firs seven pairs, $40-46-85 \mathrm{D}$ s. (rnean in 49 in the lase sid. For the second notes, the dallges bor potee rates are 42.182 ps ! imean 1-45.0) fir the first sceven pays. and $56-75 \mathrm{p}$ - (mean 64.9) for the last sis

E.hopta c-thmo

The advedisement wall of this species twas descritied hy bimlejolin of al: (1972) from the audiospectmgraphic and oncillographic analysis nit ivo zalls of one individual recorded (Nagra IIIB reconder, Flector-Voice EV 644 micsophone) dt Tonglor Creck 9 kno W of Giom River Vic. (1-19 0 05^{\prime} E. $27^{\circ} 34^{\prime} \mathrm{S}$) on 24-x.1959. The male was catlone on the bank at a wet-buth air temperatue of $10.5^{\circ} \mathrm{C}$. Owing to background noise levels in the recordiog. banly a tracing of a waveform was provided.

This melatively long call $(3,2.3 .65)$ was deseribed as of complex lemporal strocture ti.e., strongly diphatic), with a long introductory note (97()-470 mas) of high and regular pulse rate (46 p s 1) followed by a sequenee ol iregulatly produced pulses in groups of 5-7. The groups have durations hetween sf and 120 ms and pulse rates of $3457 \mathrm{p} \mathrm{s}^{1}$ near the stafl, and we logece (255-500 2ns) and of lower pulse. rate (10-2.1 s^{-1}) near the end. The deminant. ficquencies range from 13501801880 Hz within : broud bund es lrequeneies berween 1250 to 3000 Hz .
Tis confirm this descriptints, and to prowide un indication of possible effect of temprature, the lost ceas wall in the recorded sequence of anothes individual of $l_{\text {a citappa }}$ was antlysed. The recordeng was made at the Rocky River Road erossing on the Brodribb River 17.5 km NNE of Orbos Vic. (148 s 33'E. 37° 30'S) by M.. J. Litlejohn on 28.8i.1981. This frog was calling from vegetation at a heigh of aboult 50 sm , wdjacent to the river, at a wet-bolb air temperature of $17.5^{\circ} \mathrm{C}$, A wave form of this call is presented in Fig. 3C.
The call. which has an suverall duration of $2,866 \mathrm{~s}$.
consists of a distinct first note which is a regalat pulse train witly a duration of 874 mb, a pulse rate of $187 \mathrm{p} 5^{-1}$ and a dominant frequeney of 1640 Hz . A single pulse (duraion approsimately 7.0 m 5) will at dominant freqtency of 1600 Hz follows. The remander of the call conststs of elcyen eroupson :5 pulses bul fou pulses and one paif of pulses cannod realistically be grouped to allow eatculation of a pulse rate: otherwise pulse rates range from 31168.4 $\mathrm{P}={ }^{-1}$. The dominant frequencies of these polses ramee from $1200(0) 13+0)$ Ha and the durationson the pulses ratoge from 8.6 or 129 ms . The variable puthalile second pare of thes call has a maximum amplitude ahout 5 ill hagher than that of the intraductry mate.

Oripusilion

Lnoria sulvelemdelase

The advertisement eall sf the male was heard in the fagg hefore umplexus nocumed. Details of egeg mases bad we piesented la Table 2, Qviposition was not sbserved, but for wach of the three saphove pars sudied, a single ege neass was found athering to the side ut the bigg. juse helow wate Jevel. The egegs were laid in a small, compact ctomp of iwo to three layers of extremely sticky, eolerime capsules. Eeg complements. For two females were 292 and 425.

Another eight ege masses of this species were Found at loeatity 8 on 4 xi.1994 hy A. White and S. Gow: Each mass was allached to an overhanging leafoa twig acatock face il vertical of near vertical orientation, just below the waler surface in at slowdy flowing secian of a pool (some in mid-stroum). The prol was heavily shaded by ath alioust complete Lunopy cover. Steady tam had fallen three days. sarlier god the sthtied water temperature st I fod it was Y. 4 C, One of these masses, removed from the stream an on leaf and pholographed, is shown in Fig. 2

Limetio citmpa

On 25 xi. 1973 , oviposition oxeured after the make and fentate had teen eolfected at Ourmibati Crech. NSW (beatity 16. Table 3), at 2200 h . The froges were placed in a plastic bag. 'The male sonn tegan mo eall and the pair was in amplesus three hours uther capture. At OF56 in on 20.xi.1973, the intial two sequences of oviposition activity ocenred; at 0157 Jr . a further four oxipenstion sequetices toplowed, with orly athout three seconds belween each, Oviposithon was complete by 0159 h .

Io at rypieal sequence the femate dorsiflexed her body with ousstretehed hond limbs and produced a bateh of egges. The male fertilised them whole cuppiog his feet in a lanning motion around the eggs. The female then seatlered the eges with thee wudden kickine movemenis of her hind limbs, The eges satuk and spread in a single layer acerass the boitom. Site

Table 4. Comparison of embryes of Litoria subglandufosat and Lituria civopa Developmental stages are those of Gosner (1960)

Stage	Sample t.wuhgland Lecitropa 1) 11 L.			Mean embryo diameter/length (mm)	Mean capsule diameter (mon)		Description 1. suhglamidusa	1. cilmpa
2	4	4	1.59	1.73	34.57	6.11)	Animal pole: black/ vegetul pele: dark grey	dark brown/ creamy white
17	9	15	2.17	3.12	-		Body: dark grey, yolk sac light grey Heud (lateral view): acutely angled Ophic vessicle: small. distinct bulge	dark brown/ creamy white actitely angled larger. indistiner bulge
21-22	3	9	6.53	6.76	-		Gills: : mberior 3-4 branches posterior $4-5$ branches	1-2 branches $2-4$ branches (shorter)
24-25	1	8	7.34	4.65			Lateral lines: pigmented Mouth-parss: no tooth rows or keratimsed jaw sheath Howhing time: 6-10 dayx	non-pigmented tooth rows. keratimsed jaw sheath 4-6 days

then swann to another site and the process was, repented. During the final sequence, the fernale remained in the dorsiflexed position about three seconds longer. but produced no eggs. The male then released the female at the point whell she began kicking ber hind limbs.

The ege complement was 655 , Embryos hatched in four - five days at water emperatures of $17^{\circ}-23^{\circ} \mathrm{C}$. Two other egg masses laid in captivity contained 890 eggs and 928 eggs and thok four - six days 10 complere hatching at $16^{\circ}-23^{\circ} \mathrm{C}$ (see Tables $3 \& 4$)

In the tietd, the eggs were found seathered over the substrate in shallow pools or stowly flowing sections of the stream. which is similar to the mode of deposition of eggs abserved in captive pairs.

Tabse 5. Dimensions of meseqted embryos of Litoria subglandulusia
Imean in min. range in patenthesis, slage Gosmer. 1960

Stage	Gostrer. 1960)		
	Sanple	Embrya diam.	Capsule diam.
2	t	$\begin{gathered} 1.59 \\ (1.56-1.6-4) \end{gathered}$	$\begin{gathered} 3.57 \\ (3212-4.51) \end{gathered}$
7-8	5	$\begin{gathered} 1.56 \\ (1.56-1.56) \end{gathered}$	$\begin{gathered} 356 \\ -(3,36-3.85) \end{gathered}$
10	5	2.05	3.39
		(2.115-2.05)	(3,28-3,53)
17	9	$\frac{1.17}{(2.13-2.3+)}$	
20	6	$\begin{gathered} 5.81 \\ (54(4)-6.23) \end{gathered}$	
21.22	3	6.53	
		(6.48-6.6.4)	
23	$?$	(1,30, 7.34	
24	1	739	

Embryonte development

Litoria subglandulosa

Mortality rates af embryos maintaned in captivity were high. The survival rate (after removal from the stream), was greatest amongst embryos in the up layer of each mass. Those below this layer mostly ceased developing beyond about stages 8-12. Embryos from the egg mass held af locality 10 in water temperatures of $14^{\circ}-21^{\circ} \mathrm{C}$. survived the longes; ; hatching occurred from days $8-10$ and only 17 reached stages $20-25$. The mass from locality 3 did not develop beyond stage 18. Initially, the embryos from locality th conlinued to develop during the two days of immersion in the stream hefore higher temperatures atway fron the strean were experienced. Hatching occurred at stages 2021 trom days 6-8. with only eight embryos surviving. Embryos from the southern localities match the following description of those from the type locality $11)$.
Embryos laid early on I.i. 1974 (locality 10) were at stage 2 when a sample was preserved at 0945 h . The animal pole is black and the vegetal pole dark grey. There are two layers of jelly sumpounding the perivitelline membrane. Measurements of embryos are given in Table 5. The embryos were at stages $7-8$ after 8 h , and $8-9$, after 12 h . Six embryos at stages 7-8. measured after preservalion, have a smaller mean diameter than the same embryos measured live $(1.7 \mathrm{mmi}$ live, 1.5 mm preseryed: eapsule diancter 3.6 mm live, 3.3 mm preserved). After 23 h , embryos were at stages $10-11$, and after 38 h . at stages 12-13.
Stage 17 was reached after 62 h . A specimen drawn at stage 17 (Fig. 4A). is deseribed:- prominent optic vesicle, pronephric swelling slight amal bulge, large

A

B

C

Fig. - 4. Embryon of Liforian subglandedosa and l_ ciompa
A 1. wheglandulasa temoved from ibsapsule at stage 17.
B. La ifromu ronmed from its capsule, al stage 17.

1) I (iturna juan latetred, al approximately stage 21.

gilt-plate swetling. with beginnings of muscular ridges atong dorsal surfice jusi below neural tube: [1shaped adhesive organ, slight stomodacal grouve beginning to lorm. Heal truncate, acutely angled in lateral view. Tail bud short, rounded, with strong depocsion on each side below neural tube. Yolk sac grey, reshol body very dark grey. After some years in preservation. body appears dark and yolk sau lighter brown.
Embryos examined at 71 bo were in stages 17-18:growing tail bud pointing acutely to the left side of the budy within firm jelly capsule: two visceral arches Forming, narial pits beginning to develop.

Afier 45 h , stage 1 各:- optic vesiole more detined with groave forming between this and gill plate; beural tube, dotsal muscular ridges, namial pits and divided adhesive organk all more developed.

After 131 h stages 19-20:-small exterual gills. gill circulation not apparent; head small, more ronnded bete cranial region, whesive organs diminishing: wotic vesiste depressed shohbly in eentre: liye embryos diark grey dorsally. lighter grey over yoll. sac; moving uclively within capsule.

Hatehing began eight days after oviposition; afl surviving embryos had hatetied after ten days. Embeyns hathing first on day 8 were at stage 20 (iin relation (e) oplic development. but no gill eicoubiation):- Optic vesicles indisfinct yalk sac lorge deepened stonmodaeal pit with adhesive organs. close aggether it anterion end, a divided ridge at postitior end; gifle developing noticeably mobe adyaned on simistral sides veni lube oot well dillerentäted: hail fins dusky grey, slightly arched dorsally; hody dirk erey brown in preservative. head region slightly durker.

Stage ? I wis reached on day 10 , in relation to gill developisent and fiack of sail fin cireutation only. (Fig, 4C):- bwa pairs of well-developed Tunctional sxtermal gils. comprising 24 branches on imteriur pair. 1-5 on posterine pair; udhesive orgats small. trassuent, uptic vesicle undefined, fios tianslucent. deopeting fucthes, circulation nof apparent: birl musculature poorly developed.
tive fimal hatchlings at 1900 h on day 10 were at stage 22 in relation to hail circulation. hut other development was assoctated with stages 20-21:Lomea still not transparem prominent but only partially pigmented optic yesicle, tail tins deepening. gills at maximum development. Fully functionat fonger in some specimens than ohhers: dathesive organs merging to form small fidge mouth. triangular: line wo pigmeat lrom tip nt smot through each narial pil so cye.
Stage 23:- comeatranspatent, eyes Well developed. heavily pigmented; anterior half of body beeoming. tramsparent aryund nares; gils diminishing operculum developing.

Stage 24- vent the more diseernible, oral dise developing. with small triangular funnel above large oval depression ta become lower fabiuto.

By day 13, most remaining embryos were at early stage 25:-golden icidophopes scattered in spots oyet dorsum. eyes black wilth seatlered golden indophores, patches of melanin over dorsal surface of tafil musculature: Lal fins, berly wall mustly elear. with some dusky pigment present Intemarial region roticably delineated with pigment, lateral line presms becoming visible,

By day 17, the development of the mouth was almost complete with the execprion of the line black filaments, which were either not yot present, of only short unpigmented roots. Dorsal surlite farther piumented waith more golden iridophores over mreas pigmented with melanin, ineluding iris: lail musculature prgmented dorsslly, in well-spated breat bands; flecks of pigmient found over fins in older Jaryae, as yel not obvious: veniral surface clear. excepl fir broad perimeter of indophares.

Libaria cirropa

Embryonic development was described by Tyler \& Anstis (1975). A cotnpabative summary of embrys af 2 cilrapa and I. suhglandulesa during stages 2. 17. 21 and 25 is given in Table 4. Figures 4B, D shaw srager 17 ind 21. It general. L. vitropa is larger than 1. sutsghoudforme throughout embryonie development, with adhesive organs more prominent aud gills stotaller and less numerous at stage 21. At klage 25 and heyond. the lateral line ongans remain unpigmented sud mouthpatts possess woth rows ind it ketatiosed jow sheath (Fig. 4, Tyler \& Ansis 1975). Otherwise, the two species have distinetly Ifuncate, angutar treads in stage 17 and simblar hody/tail shape ! bonughout embryonic and larval development.

Larvel behtewioner
 Litorier subbytenduloner

Tadpoles of this species shasened an atl levalities in Table 1. Were mosily found on the subatrate in shallow, slowly-flowing sectung of the stream un sand amonget tucks of leat litas. They were frequently bount at the sides of the stream. swimming fast to deeper mid-atrewn or amotigst rocks if droturbed. They were well camoultaged whikt on stind on grazing amongst roeks and appeared to feed on floceulent sile dasd algae. Tadpoles delaected rapidly after capture and the ahdominal regon, while similar in width is the branchal megion (or slighty less) in live specimels in the streant, was commonly hatower in preserved specimens.

Tactpoles ubserved udhering to the substhate rapidly pulled the body forward a disanee of $2-3 \mathrm{~mm}$
by the use of the oral disc alone, in a rasping action. This process was repeated continually, resulting in a distinctive form of locomotion during feeding, which has not bcen described in other Australian suctorial species. Particles of a fine silt suspension were found amongst the dense, incurved papillae, buccal cavity and gut of recently-captured specimens.
The fine black filaments of the mouth were broken or missing in some specimens, or each was present only as a shorter white filament or core, without the black outer surface (or pigmentation).

Litoria citropa

The tadpoles were found in small rock pools (either associated with the main stream or segregated when river levels were lower), and in larger pools or slowly flowing sections of the stream. They were also found on the substrate, but unlike L. subglandulosa, were not observed moving forward by the use ol' the mouth alone; the tail and body were also involved. They appeared to feed on floceulent silt and most individuals examined live in the streams, had well-filled intestines the abdominal region being as wide as, or wider than the branchial region). When disturbed they took cover under rocks or leaf litter. They were well camoultaged on the sandly floor and the dorsal colour varied lrom light to darker golden brown, depending on the colour of the substrate and light intensity.

Discussion

Population trends

Comparative field observations of the 1960s-70s and 1990s showed a marked decline in the population status of 1 . subglanduloser at the type locality, indicating a need for comprehensive studies on population trends of this species across its entire distribution.

Aderrisement calls

The calls ol Litoria subghandulosa and L. citropa diller markedly in structure (Fig. 3A, C) and cannot be of any assistance in the confirmation of relationships based on other eriteria. As noted by Watson et al. (1991), the audiospectrograms of the advertisement calls of L. citropa and L. spenceri are of similar diphasic structure; they differ, however, in that the lollowing notes in the call of L. spenceri are more regularly pulsed and of higher pulse rate.

Oviposition and embryos

From observations of oviposition sites of Litoria rerreauxii, L. dentata, L. phyllochroa, It, caeruléa. l. chloris, L. freveineti, Limnodynastes peronii. Lim. tasmaniensis, Lim. ormatus and other specics ol Australian frogs, it has been noted that each deposits

TABLE: 6. Comparison of body proportions of lumae of Litoria subglandulosia.
Type Locality 10 compared with new localities
2, 6 a \& 7 a (Table 1).
(Measurements in mm; mean with range in brackets). Stages 35 \& 36 (Gosner 1960).

Morphometric Character	Type Locality 10 $\mathrm{n}=8$	Localities 2, 6a, 7a $\mathrm{n}=8$
TL	29.84	31.50
	$(26.40-35.00)$	$(28.50-33.75)$
BL	12.19	11.88
	$(11.64-12.63)$	$(10.82-13.13)$
BW	7.64	
	$(6.15-8.04)$	$(7.05-8.45)$
BD	6.17	6.10
TI)	$(5.74-6.64)$	$(5.58-6.72)$
	$(5.5 .86$	5.87
TM	$2.6 .48)$	$(5.42-6.40)$
	$(1.64-2.29)$	$(1.89-25$
IO	2.49	2.75
	$(2.13-2.87)$	$(2.46-3.29)$
IN	1.88	1.94
	$(1.80-1.97)$	$(1.80-2.05)$
EN	1.46	1.37
MW	$(1.15-1.64)$	$(1.15-1.64)$
	$(3.7 .55-5.25)$	4.48
		$(4.10-5.00)$

eggs in a similar manner whether in the fictd or in captivity (Anstis 1976, Anstis, unpub.). Similarly. L. citropa scatter eggs over the substrate in both captive and field situations, and L. subg/anduloser attach the entire egg mass to a surface just below water level. The egg mass of L. subglandulosa is adapted to the lotic environment, being compact in lorm and highly adherent.

Embryos of L. subglandulosa that survived beyond stages $8-12$ were mainly from the outside layer ol capsules. Mortality may be attributed to reduced oxygen levels associated with higher still - water temperatures in the laboratory of up to $24^{\circ} \mathrm{C}$. compared with $9.4^{\circ}-15^{\circ} \mathrm{C}$ in flowing streams. The embryos from the egg mass at locality 4 b continued development during the initial two days of immersion in the stream but, alter removal and placement in the laboratory, development gradually ceased over the next four days in the majority ol cases.

The periods of 6-8 and 8-10 days taken by two egg masses to hateh (while maintained in containers) are slower than those of other known stream-dwelling hylids of lower altitudes, including L. citropa (Tyler \& Anstis 1975; Anstis unpub.). Further comparisons can be made when data are available for developmental rates of egg masses within the stream.
The egg capsutes of L. cittopa are not as adherent as those of L. subglamilulosa. As they are scattered over the bottom of still pools or very slowly flowing sections of the strean, stronger adhesive properties
would not be advantageous. The embryos developed faster and had a much lower rate of mortality than those of $L_{\text {. subglandulosa, possibly atributable to }}$ the individuat capsules being scattered over a broad area, lacilitating oxygenalion.

lamer

Whilst slight differences in body proportions were noted belween some of the norlhern and southern tadpoles of L. subglandulosa (Table 6). only a small sample lixm each area was exammed.
A sample of L. subeglenderose tadpoles was also very diflicult of maintain in captivity al higher lemperalures and a second sample maintained in ateated water with filtation fared no better. Lacking keraninised juw sleaths, they could not eat foods steh as boifed lettuec and commercial fish food. fotcoduction of silf and detrital sediments taken from the streams in their natural enviromment resulted in sume feeding, althuggh the tidpoles did not grow as well us those in the streams.

The distinctive locomotive behaviour of the tadpoles imnolving forward propulsion with the use of the sral disc alone. distinguishes them lrom the similat sympatios species L. phallechena and L° leanemi', hoth of which conploy some tail movement dering locomotion assoeiated with feeding. Gradwell (1975) states that the M3e muscle in L. subrglandulora tidepoles is inserled in borb the upper and lower labia. resulting in both labia being "pulled
cuudad simultaneously". whereas "most other suetorial tadpoles move ther upper and lower jaws foward each other during their scraping action". This could explain the mechamism behind the distinctive movement observed in live ladpoles in the stream. Gradwell also notes that this species has. for its size. "the longest and densest papillate of the buceal mocosa", and these "may ast as a sieve to exclude suspended parlicles above a certain size".
Examimation of gut contents and liother observations of leeding mechanisms are required to determine the functional morphology of the anique mouthparts of this species.

Acknowledgmeuts

We are grateful to the Australian Museum and the Muscum of Vietoria for aceess 10 and foan of specimens. The NSW National Parks \& Wildife Service is acknowledged for permission to refer to records of Lituria ishoglandwhasa. John Courtncy provided the tape recording of L. stebglamdulasa amalysed. Arthur White provided Figure 4, and with Karen Thumm. Jacquie Recrei and the late Shane Gow, added valuable observations on L. subglandalosea to this study. David. Dulcie and Ron Anstis, John de Bavay and Roy Scott assisted with held work. Stephen Richards, Michael Mahony, John de Bavaly, Fred Parker and Michael Tyler constructively reviewed the manuseripl.

References

ANsers M. (1076) Brecding biology and harval
 Trems. R. Soe. S. Aus. 100), 193-2(22,
Comamb, S. 1. (1957) Australian thee fruge of the genus

Gusives, K. L. (1960) A simplificd catble for staming anturan emhryas and tarvae wift notes an identificationHespethlomica 16. 183-108).
(ik amatis, N. (1975) Experiments on otal suction and yill hreathing in five species of Australian tadpole
 177, 81-98
 Fammal Survey of New England. IV. The frogs. Mem. ©ha M(15: $38(\mathrm{~J}), 224-342$
Lembumin. M. I. \& Ilamelsen. P.A. (1985) The functional significance of the diphasic advergisement call of
 trowl and Yociultiol 16, 36.3-373.
\qquad
 G. F. (16)72) Amplibian fama uf Vieuria. Combirmation of reconds of Litoria ($=$ Hsks) cilfope (Tschudi) it Gippsland. Via. Nol. 89. 51 54.
TVeler. M I. \& Ansis, M. 11975) Taxomomy and hishogy it fruge of the Litorla sitrona emples (Anura:Hylulae) Rere S. Anst. Mus. 17 (5), 41-50).
\qquad d \qquad (1983) Replacement name for
 (Armen:llylidec), Trums. R Sece S. Aes. 107(2), 120-730. \& D Davirs M. (197s) Spectes groups withon the Australopapoan hylid Frag genms / iroria' I'scludi Any 1) Zuel. Sumpl. Sertios 63, 1-47.
 Robs.RPGov. P? (1991) Conservation status. ceology and management of the Sported tree frogat forla syencerts.
 Depre Goms. Envism. Hedelherg. Vie. 4) 1 vi pil.

[^0]: 26. Whatex Rul Berown Hoivht NSW 2082. Deporment od Zonology: Limveredy of Mchoums Darkyille Vis- Z05?
